1,9-Dimethylhypoxanthine from a Southern Australian Marine Sponge Spongosorites Species

Robert J. Capon,* Francis Rooney, and Leanne M. Murray

School of Chemistry, University of Melbourne, Parkville, Victoria, 3052, Australia

Received July 30, 1999

A *Spongosorites* sp. collected off southern Australia has yielded 1,9-dimethylhypoxanthine (**4**). The structure for **4** was solved by spectroscopic analysis.

Methylated purine bases with a range of medicinal properties have been isolated from a variety of marine and terrestrial sources. Those isolated from marine sponges include 1,3-dimethylisoguanine (1)¹ from a Bermudan sponge *Amphimedon viridis*, which was active against an ovarian cancer cell line (IC₅₀ 2.1 μ g/mL); 3,7-dimethylisoguanine (2)² from a Caribbean sponge *Agelas longissima*, which displayed mild antibacterial properties; and 1-meth-ylherbipoline (3)³ from a Japanese sponge *Jaspis* sp., which was reported to be a collagenase inhibitor. In this report we describe the isolation and identification of a new example of this structure class, 1,9-dimethylhypoxanthine (4), from a *Spongosorites* sp. collected off southern Australia.

The aqueous ethanol extract of a *Spongosorites* sp. was decanted and concentrated in vacuo, after which it was subjected to solvent partitioning and chromatographic fractionation. In earlier reports we described the isolation of isobromotopsentin (5)⁴ as well as dragmacidin D (6)⁵ and dragmacidin E (7)⁶ from the methanol-soluble portion of

this extract. In the present report we describe our studies into the H_2O -soluble material from this same sponge.

The H₂O-soluble residue was subjected to gel permeation (Sephadex G-10) chromatography and C₁₈ HPLC to yield 4 as a white solid. HREIMS gave a molecular formula $(C_7H_8ON_4 \Delta 0.2 \text{ mmu})$ requiring six double-bond equivalents. The ¹H NMR data for 4 revealed resonances consistent with two N–CH₃ groups (δ 3.87 and 3.88) and two deshielded methines (δ 8.25 and 8.48). Particularly significant was the absence of exchangeable signals when the ¹H NMR data were acquired in DMSO- d_6 , together with the lack of OH or NH absorptions in the IR spectrum. In addition to two N-CH3 resonances, the ¹³C NMR spectrum for 4 featured five deshielded sp² hybridized carbons (see Table 1). Together with characteristic UV absorptions (260 and 209 nm), the data described above are consistent with a dimethylhypoxanthine. Examination of COSY and ¹H-¹³C gHMBC NMR data (see Table 1) failed to distinguish between a number of possible substitution patterns; however, NOE difference analysis did confirm a 12% NOE to N(1)–CH₃ on irradiation of H-2 (δ 8.48) and a 10% NOE to N(9)–CH₃ on irradiation of H-8 (δ 8.25). Final confirmation of the 1,9-methylation pattern was achieved by interpretation of the ¹H-¹⁵N gHMBC NMR data for 4, which revealed correlations from (a) H-2 to N-1 and N-3, (b) N(1)-CH₃ to N-1, (c) H-8 to N-7 and N-9, and (d) N(9)-CH₃ to N-9. To the best of our knowledge this is the first account of 1,9-dimethylhypoxanthine (4).

The assignment of structures to highly substituted heterocycles such as **4** is not trivial, and this analysis serves to highlight the valuable role that ${}^{1}H^{-15}N$ inverse NMR experiments can play in this process.

Experimental Section

General Experimental Procedures. Procedures were as performed by Urban et al.⁷

Animal Material. A Spongosorites sp. (432 g dry wt, Demospongiae, Halichondriidae) was used. Its growth form was massive; live color, texture, and surface features unknown; aerophobic dark green pigments in ethanol and producing a dark eosinic pigment; texture very hard (stony), arenaceous; ectosomal skeleton with embedded detritus and producing erect, slightly larger oxeas from ascending choanosonal tracts, surmounted by a paratangential felt-like network of slightly smaller oxeas; choanosome with a criss-cross halichondroid reticulation of both smaller and larger oxeas forming vaguely directionless tracts, eventually ascending to the surface, with large sand grains and other detritus throughout the skeleton; oxeas moderately small, slender, sharply pointed, fusiform, some with centrangulate swellings, more or less divided into two size classes but with numerous intermediates (85–160 imes $3-5 \,\mu$ m); no microscleres were present. The *Spongosorites* sp.

^{*} To whom correspondence should be addressed. Tel.: 61 3 9344 6468. Fax: 61 3 9347 5180. E-mail: r.capon@chemistry.unimelb.edu.au.

Table 1. NMR (D₂O, 400 MHz) Data for 1,9-Dimethylhypoxanthine $(4)^{a}$

	$^{1}\mathrm{H}$	¹³ C	¹ H- ¹³ C	$^{1}H^{-15}N$
number	(δ, m)	(ppm)	gHMBC	gHMBC
2	8.48, s	148.5	C-4, C-5, N(1)- C H ₃	N-1, N-3
4		149.0		
5		120.1		
6		158.8		
8	8.25, s	146.2	C-4, C-5, N(9)-CH ₃	N-7, N-9
$N(1)-CH_3$	3.87, s	38.1	C-2, C-6	N-1
N(9)-CH ₃	3.88, s	30.6	C-4, C-8	N-9

 a ^{13}C NMR assignments supported by gHMQC, DEPT 90° and 135° NMR experiments; referenced to dioxane (δ 66.5).

was collected by epibenthic sled at a depth of 90 m off the coast of South Australia during a scientific cruise aboard the *R. V. Franklin* in May 1991. A voucher specimen was deposited with the Queensland Museum (registry number QMG301315).

Extraction and Isolation. After transportation to the laboratory, the sponge was diced, steeped in EtOH, and stored at -18 °C. The EtOH extract was decanted, filtered through Celite, and partitioned into BuOH and H₂O soluble fractions. The H₂O soluble fraction (1.45 g, 0.34%) was concentrated to a white solid that was fractionated by gel permeation chromatography (elution with H₂O through a 2 × 40 cm Sephadex G-10 column equipped with an ISCO fraction collector and ISCO UV/vis detector) and C₁₈ HPLC (2 mL/min, 10% MeOH–H₂O through a 25 × 1 cm Phenomenex 5 μ ODS column) to yield 1,9-dimethylhypoxanthine (4) (42 mg, 0.01% dry wt).

1,9-Dimethylhypoxanthine (4): white powder, mp > 300 °C; UV (H₂O) λ_{max} (log ϵ) 209 (3.7), 260 (3.4) nm; IR (film) ν_{max} 1692, 1649, 1579 cm⁻¹; ¹H and ¹³C NMR (400 MHz, D₂O), see Table 1; EIMS *m*/*z* 164 (M, 10), 163 (M – H, 100), 162 (97), 142 (10), 135 (15), 121 (16), 108 (20), 107 (10), 82 (28); HREIMS *m*/*z* 164.0700 (calcd for C₇H₈N₄O, 164.0698); 163.0618 (calcd for C₇H₇N₄O, 163.0620).

Acknowledgment. We acknowledge the CSIRO Division of Oceanography and the crew and scientific personnel aboard the *O. R. V. Franklin* for the collection of the *Spongosorites* specimen. We also acknowledge taxonomic classification by L. Goudie. This research was supported by the Australian Research Council.

References and Notes

- Mitchell, S. S.; Whitehill, A. B.; Trapido-Rosenthal, H. G.; Ireland, C, M. J. Nat. Prod. 1997, 60, 727–728.
- (2) Cafieri, F.; Ernesto, F.; Mangoni, A.; Tagliatela-Scafati, O. Tetrahedron Lett. **1995**, *36*, 7893–7896.
- Yagi, H.; Matsunaga, S.; Fusetani, N. J. Nat. Prod. 1994, 57, 837– 838.
 Murray, L. M.; Lim, T. K.; Hooper, J. N. A.; Capon, R. J. Aust. J.
- *Chem.* 1995, *48*, 2053–2058.
 Wright, A. E.; Pomponi, S. A.; Cross, S. S.; McCarthy, P. *J. Org. Chem.*
- (6) Capon, R. J.; Rooney, F. R.; Murray, L. M.; Collins, E.; Sim, A. T. R.; Rostas, J. A. P.; Butler, M. S.; Carroll, A. R. *J. Nat. Prod.* **1998**, *61*,
- 660–662. (7) Urban, S.; Capon, R. J.; Hooper, J. N. A. Aust J. Chem. **1994**, 47, 2279–2282.

NP990378E